
www.manaraa.com

In Proceedings of 10th International Conference on Database and Expert Systems Applications

(DEXA 2000), Greenwich, UK, September 4-8, 2000. 
LNCS Vol. ????. pp. ???-???.Design and Implementation of the OLOGDedutive Objet-Oriented DatabaseManagement SystemXindong Li and Menghi LiuDepartment of Computer SieneUniversity of ReginaRegina, Saskathewan, Canada S4S 0A2Email: fli,mliug�s.uregina.aAbstrat. OLOG is a novel dedutive database system for advanedintelligent information system appliations. It diretly supports e�etivestorage, eÆient aess and inferene of large amount of persistent datawith omplex strutures. It provides a SQL-like data de�nition languageand data manipulation language, and a delarative rule-based query lan-guage. It ombines the best of the dedutive, objet-oriented, and objet-relational approahes in a uniform framework. This paper desribes thedesign and implementation of the OLOG system.1 IntrodutionDedutive, objet-oriented, and objet-relational databases are three importantextensions of the traditional relational database tehnology. Dedutive databasesstem from the integration of logi programming and relational databases. It o�ersrepresentational and operational uniformity, reasoning apabilities, reursion,delarative querying, eÆient seondary storage aess, et. However, dedutivedatabases based on relational databases only allow at relations and do notsupport data abstration. As a result, more powerful dedutive languages thatsupport data with omplex strutures have been proposed, suh as LDL [6℄,LPS [12℄, COL [1℄, Hilog [5℄, Relationlog [16℄, See [17℄ for an overview of someof these languages. Also, several dedutive database systems that support datawith omplex strutures have been developed, suh as LDL [6℄, CORAL [23℄,and Relationlog [19℄.Objet-oriented onepts have evolved in three di�erent disiplines: �rst inprogramming languages, then in arti�ial intelligene, and then in databasessine the end of the 60's. Indeed, objet orientation o�ers some of the mostpromising ways to meet the demands of many advaned database appliations.The objet-oriented philosophy reates a powerful synergy throughout the de-velopment life yle by ombining abstration, enapsulation, and modularity.In the past deade, various objet-oriented data models were developed [3, 7, 8,13℄. Also see an review in [25℄. But there is a major problem with the objet-oriented approah that is the lak of logial or mathematial foundations that,



www.manaraa.com

traditionally, has been playing an important role in database researh. Suh afoundation is essential for de�ning the semantis of databases and queries, fordatabase design, and for query optimization.Objet-relational databases ombine important objet-oriented features withnested relational objet databases. It extends relational databases with a rihertype system inluding objet orientation and adds onstruts to relational querylanguages, suh as SQL to deal with the added data types.In the past deade, a lot of e�ort has been made to integrate dedutiveand objet-oriented databases to gain the best of the two approahes, suh asO-logi [22℄, revised O-logi [11℄, F-logi [10℄, IQL [2℄, LOGRES [4℄, ROL [15℄,Datalog++ [9℄, and DO2 [14℄. As surveyed in [24℄, many of DOOD models are de-veloped by extending and/or integrating the already existed dedutive or objet-oriented data models and they either are limited in objet-oriented features orlak logial semantis. Few of them are fully implemented as persistent databasemanagement systems.The objetive of the OLOG system is to develop tehniques for advanedintelligent information systems that diretly support e�etive storage, eÆientaess and inferene of large amount of data with omplex strutures. The OLOGlanguage [18℄ is based on IQL [2℄ and O2 [7℄. It overomes the problem assoiatedwith IQL. It e�etively integrates useful features in other dedutive languageswith a well-de�ned logial semantis.The OLOG system has been developed in C++ mainly on a SUN SPARC-station running Solaris 2.5. It is implemented as a persistent database systemthat supports the OLOG query language, an SQL-like data de�nition languageand data manipulation language. The implementation is based on ROL [20℄ andRelationlog [21℄.In this paper, we desribe the design and implementation of the OLOG sys-tem. In Setion 2, we provide a brief overview of the OLOG language. In Setion3, we desribe the OLOG system arhiteture. In Setion 4, we explain the �lesystem and storage management. In Setion 5, we disuss OLOG kernel. In Se-tion 6, we fous on the query evaluation issues. In Setion 7, we onlude andomment on our future plans.Due to spae limitation, the disussion is terse and imomplete.2 Overview of OLOG LanguageIn OLOG, we an have not only lasses but also relations with omplex datastrutures suh as nested tuples and sets. In this setion, we present a briefsummary of the OLOG language.An OLOG database onsists of four parts: type, shema, program, and fat.The OLOG language is a typed language for de�ning, manipulating, and query-ing OLOG databases.The type part ontains all type de�nitions. OLOG supports atomi datatypes inluding Char, String, Integer, and Real and lass types for objets. Basedon these data types, omplex data types an be de�ned using tuple and set



www.manaraa.com

onstrutors. The following examples show how to de�ne tuple and set types inOLOG:reate type Address (Street String, City String)reate type PersonSet fPersongThe shema part ontains all shemas for both lasses and relations. Theshema provides the desription of the database strutures and are the basis forstorage strutures and query optimization strategies. Moreover, they are essentialto the onsisteny of the database. The following examples show how to de�nelasses and relations in OLOG:reate lass Person (Name String,Gender Char,LivesIn Address,Spouse Person,Children PersonSet,Anestors PersonSet)reate relation Family (Husband Person,Wife Person,Children PersonSet,primary key (Husband, Wife))Syntatially, lass and relation de�nitions di�er only in the key words. Se-mantially, a lass de�nition is for a olletion of objets whereas a relationde�nition is for a olletion of relation tuples. Objets in OLOG has objetidenti�ers whereas relation tuples do not. OLOG supports lass hierarhy andmultiple inheritane. The following examples show how to de�ne sublasses inOLOG:reate lass Employee isa Person (Salary Integer,Phone Integer)reate lass Student isa Person (Age Integer)The rule part is used to de�ne intentional data that an be derived from theextensional data in fat part. Rules orrespond to views of relational databases,but an be de�ned reursively. The following example show how to de�ne rulesto derive intensional information for lass Person and relation Family:



www.manaraa.com

reate rule Person (Anestors <P> :{ Parents <P>;Anestors <A> :{ Parents <P>, P.Anestors <A>;)reate rule Family (Family (Husband H, Wife W, Children <C>) :{Person H (Gender 'M', Spouse W, Children <C>);Family (Husband H, Wife: W, Children <C>) :{Person W (Gender 'F', Spouse H, Children <C>);)The fat part ontains relation tuples and objets. The following exampleshows how to reate objets in OLOG, where tom and pam are objet identi�ers:insert Employee tom(Name "Tom",Gender 'M',LiveIn ("Elm St", "Toronto"),Spouse pam,Parents fg)insert Student pam(Name "Pam",Gender 'F',LiveIn ("MaPherson Avenue", "Regina"),Spouse tom,Parents fg)The user an use OLOG queries to query OLOG databases. Queries in OLOGare represented using rules as well, the head of whih spei�es how to onstrutthe result whereas the body spei�es the query onditions. The following areseveral query examples:query Result (TomsWife S) :{ Person (Name "Tom", Spouse.Name S)query Result (TomsAns <S>) :{ Person (Name "Tom", Anestors.Name S)query Result (AllTomsChildren <C>) :{Family (Husband.Name "Tom"; Children.Name C)query Result (Person N, Children <C>) :{Family (Husband.Name N, Children.Name C)Like ROL and Relationlog, OLOG supports type, shema, rule and otherhigher-order queries.3 System ArhitetureThe OLOG system has been implemented as a single-user persistent databasesystem in C++ under the Unix environment. The funtional omponents of



www.manaraa.com

OLOG an be roughly divided into three layers: interfae, OLOG kernel, andstorage management as shown in Figure 1.
Type Checker

DML Manager

InterfaceInterface Layer

Index Manager

OLOG Kernel

DDL Manager

Data & Index Files System Files

Storage Manager
Storage Layer

Query Manager

Fig. 1. The Arhiteture of OLOG SystemThe interfae layer provides a friendly interfae to users, takes user requestsin di�erent forms, and translates them into internal form to the OLOG kernel.Two kinds of interfaes are provided: textual interfae and web interfae.The OLOG kernel onsists of �ve omponents that are type heker, querymanager, DML manager, DDL manager, and index manager. The type hekerdeals with all the type heking requests. The DDL manager is responsible forproessing all DDL ommands, maintaining system atalogs about domains,lasses, relations and rules. The DML manager performs all the updates to theextensional relations and objets. The query manager handles user queries. Theindex manager is responsible for maintaining the index information, proessingall index related operations from DDL and DML managers, and providing theindex information for query manager.The storage management layer is responsible for the management of the disk-based data strutures on whih databases are stored. It provides rapid aess toobjets and relations and meta information about them on the disk. The mainjob of the storage manager is to move the data between disk and memory asneeded.



www.manaraa.com

4 File system and storage managementThe OLOG �le system is built on top of the UNIX �le system. Eah databaseorresponds to two disk �les: the data �le and the index �le, whih are automat-ially reated by OLOG system when started. The data �le stores objets andrelation tuples whereas the index �le ontains key indies to objets and relationtuples. In addition, OLOG maintains four system �les for meta data manage-ment: database �le whih reords the information of all databases in the system,relation �le whih reords the information of all relations, lass �le whih reordsthe information of all lasses, and rule �le whih reords the information of allrules in eah database. All data, index and various de�nition units in OLOG�les are stored as byte string.The internal struture of the OLOG data �le supports the following hara-teristis:(1) variable-length relation tuples and objets(2) indies for objets and relation tuples(3) reuse of deleted disk �le spaeThe data �le ontains a �le header and a dynami storage area where variable-length bloks of data are stored. The �le header is omposed of the following�elds:(1) free spae { stores a pointer to the �rst blok of dealloated heap spae(2) end of �le { stores a pointer to the address of the last byte in the �le(3) start of heap { stores a pointer to the start of the dynami storage areaWhen a blok is dealloated, the blok is marked deleted and left in the �le.The size of the �le is determined by bloks alloated and will remain the sameno matter how many bloks are deleted. The deleted bloks are maintained ina non-ontiguous list. Eah blok in the list points to the next blok in the liststarting at a spei�ed address. The \free spae" pointer in the �le header is usedto store the �le address of the blok where the free spae list starts.The dynami data area always starts out empty and grows when variabledata bloks are alloated. The \free spae" and \end of �le" pointers in theOLOG �le header are used to maintain the dynami data area. The \end of �le"pointer marks the end of the �le and points to the loation where the �le anbe extended during blok alloation. OLOG always tries to alloate bloks fromits free spae list.In OLOG, �le addresses of blok are used as pointers to the objets andrelational tuples. File addresses are represented by 32-bit signed integer values.Therefore, the �le an grow to a maximum size of 2.1 GB. File addresses haveto be translated into exat memory addresses for the aesses in memory. TheStorage Manager is in harge of address mapping that translates �le addressesinto memory addressesTo make eÆient use of eah blok, OLOG adopts a tehnique similar tothat used in Cahe-Memory Mapping, alled Set Assoiative Mapping. Eah



www.manaraa.com

relation or lass has its own bu�er spae for its own fats. The bu�er spae isomposed of a lot of memory pages, holding some memory slots. This manageris responsible for managing the spae oupied by various entities requested bythe appliations. This means if an objet or a relational tuple is urrently inmain memory, then its memory address is returned to the appliation requestingit. Otherwise the Storage Manager employs a LRU algorithm to drop some oldobjets or relational tuples that have not been used for a long time, and thenloads this one into memory. In ase that the blok to be dropped has beenhanged or deleted, the Bu�er Manager physially hanges or deletes the blokstored on disk. The format of an objet in its page bu�er is similar to its diskformat.5 OLOG KernelIn this setion, we briey desribe Query, DML, DDL and Index managers inOLOG Kernel.Query Manager The Query Manager is responsible for data retrieval and ruleevaluation pertaining to the fats stored extensionally in the database and de-�ned intensionally by rules. It �rstly translates a query into its internal expres-sions, optimizes them based on the onditions the query proesses and then usesdi�erent evaluation strategies suh as mathing, semi-naive bottom-up evalu-ation with rule ordering, and magi-set rule rewriting tehniques to �nd theresults. We disuss query evaluation in detail in Setion 6.DML Manager The DML Manager performs all the updates to the extensionalrelations and objets. When an objet or relation tuple is to be inserted, DML�rst invokes DDL manager to query the shema de�nition and hek whetherit is well-typed with respet to its shema de�nition. Only well-typed objetsand relation tuples an be inserted suessfully. When an objet or relationtuple is to be deleted, DML �rst heks whether it is referened. If not, it thenproeeds; otherwise, it rejets the request. Modi�ation of an objet or relationtuple is handled similarly. In OLOG, an update may imply a query. In this ase,the DML manager will invoke the Query Manager to proess the query beforeperforming the update. After extensional relations or objets are updated, it willalso request the Query Manager to propagate the updates to the materializedintensional relations and objets that are dependent on the updated ones.DDL Manager The DDL Manager proesses all OLOG DDL ommands, main-tains system �les about domains, lass and relation shemas, and rules. It alsohandles domain, shema, and rule queries and is thus alled by DML and QueryManagers. As intensional information may be materialized, the DDL manageris also responsible for dropping those materialized intensional information andthe orresponding rules when requested.



www.manaraa.com

Index Manager The Index Manager maintains the B-tree indies for the OLOGextensional and intensional relations and objets. and Hash indies for temporalones. They are hosen beause they are eÆient and standard, and are used bymost database systems. For objets, objet identi�ers are used as the key. Forrelations, primary keys are used as the key for B-tree indexing. B-tree indiesreside both in memory and on disk and are used for de�ning and maintainingkeys of eah relation. They are stored in the index �le of eah database. Hashindies are applied only in memory for temporal relations, whih ould be thedi�erential relations of semi-naive evaluation or temporarily reated views.6 Query EvaluationThe OLOG query manager is responsible for data retrieval and rule evaluationpertaining to the fats stored extensionally in the data �le and de�ned intension-ally by rules in the rule system �le. It ombines the query proessing methods inROL [20℄ and Relationlog [19℄ and supports the following evaluation strategies:(1) mathing(2) semi-naive bottom-up evaluation with rule ordering(3) magi-set rule rewriting tehniqueMathing In OLOG, the intensional information derived using rules is main-tained by the system. It is kept in main memory if the memory spae permitsand it an be made persistent and maintained urrent by the system. If a userquery onerns only the information in main memory, OLOG an �nd the queryresults immediately without any disk operations. If a user query onerns onlythe information stored on disk, OLOG uses indies if any to �nd the requiredinformation. For example, OLOG will use mathing to evaluate the followingquery:query Result (TomsWife S) :{ Person (Name "Tom", Spouse.Name S)Semi-naive bottom-up evaluation This strategy is used to evaluate rules and isthe main one for the query proessing in dedutive database systems. If a userquery onerns the intensional information that is not available in main memoryor on disk, and the query is so general that no other methods an be used, thenOLOG uses this strategy. For example, OLOG will uses semi-naive bottom-upstrategy to evaluate the following query:query Result (Person N, Children <C>) :{Family (Husband.Name N, Children.Name C)Magi-set rule rewriting tehnique If a user query ontains some onstants, thenwe an only ompute intensional information relevant to the query using themagi-set rule rewriting tehnique as it simulates in semi-naive bottom-up eval-uation the pushing of seletions that ours in top-down approahes. Its perfor-mane an rival the eÆieny of the top-down tehniques. For example, OLOGwill use magi-set rule rewriting tehnique to evaluate the following queries:



www.manaraa.com

query Result (TomsAns <S>) :{ Person (Name "Tom", Anestors.Name S)query Result (AllTomsChildren <C>) :{Family (Husband.Name "Tom"; Children.Name C)7 ConlusionIn this paper, we have disussed the design and implementation of the OLOGdedutive objet-oriented database system. The main novel feature of OLOG isits natural support for persistent lasses and relations so that both pure objet-oriented and objet relational databases an be supported.A omplete implementation as desribed in this paper has been developed un-der the UNIX environment. The system will be available over the Internet afterfurther testing, debugging and improving. More information about OLOG sys-tem an be found from the web site http://www.s.uregina.a/�mliu/OLOG.We are urrently extending OLOG into a full-edged system. We are alsodeveloping the interfaes of SQL, OQL, and extended relational algebra andalulus on the top of OLOG in order to make it a useful tool in the databaseresearh and teahing.AknowledgmentThe authors thank the Natural Sienes and Engineering Researh Counil ofCanada (NSERC) for researh and equipment grants to M. Liu and the GraduateStudies and Researh of the University of Regina for sholarships to X. Li.Referenes1. S. Abiteboul and S. Grumbah. COL: A Logi-Based Language for Complex Ob-jets. ACM Trans. on Database Systems, 16(1):1{30, 1991.2. S. Abiteboul and P. C. Kanellakis. Objet Identity as a Query Language. Journalof ACM, 45(5):798{842, 1998.3. P. Butterworth, A. Otis, and J. Stein. The Gemstone Objet Database Manage-ment System. Communiations of the ACM, 34(10):64{77, 1991.4. F. Caae, S. Ceri, S. Crepi-Reghizzi, L. Tana, and R. Ziari. Integrating Objet-Oriented Data Modelling with a Rule-Based Programming Paradigm. In Pro-eedings of the ACM SIGMOD International Conferene on Management of Data,pages 225{236, 1990.5. Q. Chen and W. Chu. HILOG: A High-Order Logi Programming Language forNon-1NF Dedutive Databases. In W. Kim, J.M. Niolas, and S. Nishio, edi-tors, Proeedings of the International Conferene on Dedutive and Objet-OrientedDatabases, pages 431{452, Kyoto, Japan, 1989. North-Holland.6. D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo.The LDL System Prototype. IEEE Transations on Knowledge and Data Engi-neering, 2(1):76{90, 1990.



www.manaraa.com

7. O. Deux and others. The Story of O2. IEEE Transations on Knowledge and DataEngineering, 2(1):91{108, 1990.8. D. H. Fishman, B. Beeh, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis,N. Derrett, C. G. Hoh, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A.Ryan, and M. C. Shan. Iris: An objet-Oriented Database Management System.ACM Trans. on OÆe Information Systems, 5(1):48{69, 1987.9. H. M. Jamil. Implementing Abstrat Objets with Inheritane in Datalogneg . InProeedings of the International Conferene on Very Large Data Bases, pages 46{65, Athens, Greee, 1997. Morgan Kaufmann Publishers, In.10. M. Kifer, G. Lausen, and J. Wu. Logial Foundations of Objet-Oriented andFrame-Based Languages. Journal of ACM, 42(4):741{843, 1995.11. M. Kifer and J. Wu. A Logi for Programming with Complex Objets. J. Computerand System Sienes, 47(1):77{120, 1993.12. G. M. Kuper. Logi Programming with Sets. J. Computer and System Sienes,41(1):44{64, 1990.13. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjetStore System.Communiations of the ACM, 34(10):50{63, 1991.14. T. W. Ling and W. B. T. Lee. DO2: A Dedutive Objet-Oriented DatabaseSystem. In Proeedings of the 9th International Conferene on Database and ExpertSystem Appliations (DEXA '98), pages 50{59, Vienna, Austria, 1998. Springer-Verlag LNCS 1460.15. M. Liu. ROL: A Dedutive Objet Base Language. Information Systems, 21(5):431{ 457, 1996.16. M. Liu. Relationlog: A Typed Extension to Datalog with Sets and Tuples. Journalof Logi Programming, 36(3):271{299, 1998.17. M. Liu. Dedutive Database Languages: Problems and Solutions. ACM ComputingSurveys, 30(1):27{62, 1999.18. M. Liu. OLOG: A Dedutive Objet Database Language. In Proeedings of theWorkshop on Next Generation Information Tehnologies and Systems (NGITS'99), pages 120{137, Zikhron-Yaakov, Israel, July 5-7 1999. Springer-Verlag LNCS1649.19. M. Liu. Query Proessing in Relationlog. In Proeedings of the 10th InternationalConferene on Database and Expert System Appliations (DEXA '99), pages 342{351, Florene, Italy, August 30-September 3 1999. Springer-Verlag LNCS 1677.20. M. Liu. The Design and Implementation of the ROL System. Journal of IntelligentInformation System, 15(2):41{68, 2000.21. M. Liu and R. Shan. The Design and Implementation of the Relationlog DedutiveDatabase System. In Proeedings of the 9th International Workshop on Databaseand Expert System Appliations (DEXA Workshop '98), pages 856{863, Vienna,Austria, August 24-28 1998. IEEE-CS Press.22. D. Maier. A logi for objets. Tehnial Report CS/E-86-012, Oregon GraduateInstitute, Beaverton, Oregon, 1986.23. R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORALDedutive System. The VLDB Journal, 3(2):161{210, 1994.24. P. R. F. Sampaio and N. W. Paton. Dedutive Objet-Oriented Database Systems:A Survey. In Proeedings of the 3rd International Workshop on Rules in DatabaseSystems (RIDS '92), pages 1{19. Springer-Verlag LNCS 1312, 1997.25. V. Soloviev. An Overview of Three Commerial Objet-Oriented Database Man-agement Systems: ONTOS, ObjetStore, O2. SIGMOD Reord, 21(1):93{104, 1992.


