In Proceedings of 10th International Conference on Database and Expert Systems Applications
(DEXA 2000), Greenwich, UK, September 4-8, 2000. LNCS Vol. ?2?2. pp. ?77?-72?.

Design and Implementation of the OLOG
Deductive Object-Oriented Database
Management System

Xindong Li and Mengchi Liu

Department of Computer Science
University of Regina
Regina, Saskatchewan, Canada S4S 0A2

Email: {1li,mliu}@cs.uregina.ca

Abstract. OLOG is a novel deductive database system for advanced
intelligent information system applications. It directly supports effective
storage, efficient access and inference of large amount of persistent data
with complex structures. It provides a SQL-like data definition language
and data manipulation language, and a declarative rule-based query lan-
guage. It combines the best of the deductive, object-oriented, and object-
relational approaches in a uniform framework. This paper describes the
design and implementation of the OLOG system.

1 Introduction

Deductive, object-oriented, and object-relational databases are three important
extensions of the traditional relational database technology. Deductive databases
stem from the integration of logic programming and relational databases. It offers
representational and operational uniformity, reasoning capabilities, recursion,
declarative querying, efficient secondary storage access, etc. However, deductive
databases based on relational databases only allow flat relations and do not
support data abstraction. As a result, more powerful deductive languages that
support data with complex structures have been proposed, such as LDL [6],
LPS [12], COL [1], Hilog [5], Relationlog [16], See [17] for an overview of some
of these languages. Also, several deductive database systems that support data
with complex structures have been developed, such as LDL [6], CORAL [23],
and Relationlog [19].

Object-oriented concepts have evolved in three different disciplines: first in
programming languages, then in artificial intelligence, and then in databases
since the end of the 60’s. Indeed, object orientation offers some of the most
promising ways to meet the demands of many advanced database applications.
The object-oriented philosophy creates a powerful synergy throughout the de-
velopment life cycle by combining abstraction, encapsulation, and modularity.
In the past decade, various object-oriented data models were developed [3,7, 8,
13]. Also see an review in [25]. But there is a major problem with the object-
oriented approach that is the lack of logical or mathematical foundations that,

www.manaraa.com



traditionally, has been playing an important role in database research. Such a
foundation is essential for defining the semantics of databases and queries, for
database design, and for query optimization.

Object-relational databases combine important object-oriented features with
nested relational object databases. It extends relational databases with a richer
type system including object orientation and adds constructs to relational query
languages, such as SQL to deal with the added data types.

In the past decade, a lot of effort has been made to integrate deductive
and object-oriented databases to gain the best of the two approaches, such as
O-logic [22], revised O-logic [11], F-logic [10], IQL [2], LOGRES [4], ROL [15],
Datalog®™™ [9], and DO2 [14]. As surveyed in [24], many of DOOD models are de-
veloped by extending and /or integrating the already existed deductive or object-
oriented data models and they either are limited in object-oriented features or
lack logical semantics. Few of them are fully implemented as persistent database
management systems.

The objective of the OLOG system is to develop techniques for advanced
intelligent information systems that directly support effective storage, efficient
access and inference of large amount of data with complex structures. The OLOG
language [18] is based on IQL [2] and O2 [7]. It overcomes the problem associated
with IQL. It effectively integrates useful features in other deductive languages
with a well-defined logical semantics.

The OLOG system has been developed in C++ mainly on a SUN SPARC-
station running Solaris 2.5. It is implemented as a persistent database system
that supports the OLOG query language, an SQL-like data definition language
and data manipulation language. The implementation is based on ROL [20] and
Relationlog [21].

In this paper, we describe the design and implementation of the OLOG sys-
tem. In Section 2, we provide a brief overview of the OLOG language. In Section
3, we describe the OLOG system architecture. In Section 4, we explain the file
system and storage management. In Section 5, we discuss OLOG kernel. In Sec-
tion 6, we focus on the query evaluation issues. In Section 7, we conclude and
comment on our future plans.

Due to space limitation, the discussion is terse and imcomplete.

2 Overview of OLOG Language

In OLOG, we can have not only classes but also relations with complex data
structures such as nested tuples and sets. In this section, we present a brief
summary of the OLOG language.

An OLOG database consists of four parts: type, schema, program, and fact.
The OLOG language is a typed language for defining, manipulating, and query-
ing OLOG databases.

The type part contains all type definitions. OLOG supports atomic data
types including Char, String, Integer, and Real and class types for objects. Based
on these data types, complex data types can be defined using tuple and set

www.manaraa.com



constructors. The following examples show how to define tuple and set types in
OLOG:

create type Address (Street String, City String)
create type PersonSet {Person}

The schema part contains all schemas for both classes and relations. The
schema, provides the description of the database structures and are the basis for
storage structures and query optimization strategies. Moreover, they are essential
to the consistency of the database. The following examples show how to define
classes and relations in OLOG:

create class Person (
Name String,
Gender Char,
Livesin Address,
Spouse Person,
Children PersonSet,
Ancestors PersonSet

)

create relation Family (
Husband Person,
Wife Person,
Children PersonSet,
primary key (Husband, Wife)

)

Syntactically, class and relation definitions differ only in the key words. Se-
mantically, a class definition is for a collection of objects whereas a relation
definition is for a collection of relation tuples. Objects in OLOG has object
identifiers whereas relation tuples do not. OLOG supports class hierarchy and
multiple inheritance. The following examples show how to define subclasses in
OLOG:

create class Employee isa Person (
Salary Integer,
Phone Integer

)

create class Student isa Person (
Age Integer

)

The rule part is used to define intentional data that can be derived from the
extensional data in fact part. Rules correspond to views of relational databases,
but can be defined recursively. The following example show how to define rules
to derive intensional information for class Person and relation Family:

www.manharaa.com




create rule Person (
Ancestors <P> :— Parents <P>;
Ancestors <A> :— Parents <P>, P.Ancestors <A>;

)

create rule Family (
Family (Husband H, Wife W, Children <C>) :—
Person H (Gender 'M’, Spouse W, Children <C>);
Family (Husband H, Wife: W, Children <C>) -
Person W (Gender 'F', Spouse H, Children <C>);
)

The fact part contains relation tuples and objects. The following example
shows how to create objects in OLOG, where tom and pam are object identifiers:

insert Employee tom(Name " Tom",
Gender 'M’,
Liveln ("Elm St", " Toronto"),
Spouse pam,
Parents {}
)
insert Student pam(Name "Pam”,
Gender 'F’,
Liveln (" MacPherson Avenue”, "Regina"),

Spouse tom,
Parents {}

)

The user can use OLOG queries to query OLOG databases. Queries in OLOG
are represented using rules as well, the head of which specifies how to construct
the result whereas the body specifies the query conditions. The following are
several query examples:

query Result (TomsWife S) :— Person (Name "Tom", Spouse.Name S)
query Result (TomsAncs <S>) :— Person (Name " Tom", Ancestors.Name S)

query Result (AllTomsChildren <C>) :—
Family (Husband.Name "Tom"; Children.Name C)

query Result (Person N, Children <C>) -
Family (Husband.Name N, Children.Name C)

Like ROL and Relationlog, OLOG supports type, schema, rule and other
higher-order queries.

3 System Architecture

The OLOG system has been implemented as a single-user persistent database
system in C++4 under the Unix environment. The functional components of

www.manharaa.com




OLOG can be roughly divided into three layers: interface, OLOG kernel, and
storage management as shown in Figure 1.

Interface Layer Interface
OLOG Kernel
Type Checker
Query Manager DML Manager DDL Manager
Index Manager

Storage Manager

Storage Layer

Data & Index Files

Fig. 1. The Architecture of OLOG System

The interface layer provides a friendly interface to users, takes user requests
in different forms, and translates them into internal form to the OLOG kernel.
Two kinds of interfaces are provided: textual interface and web interface.

The OLOG kernel consists of five components that are type checker, query
manager, DML manager, DDL manager, and index manager. The type checker
deals with all the type checking requests. The DDL manager is responsible for
processing all DDL commands, maintaining system catalogs about domains,
classes, relations and rules. The DML manager performs all the updates to the
extensional relations and objects. The query manager handles user queries. The
index manager is responsible for maintaining the index information, processing
all index related operations from DDL and DML managers, and providing the
index information for query manager.

The storage management layer is responsible for the management of the disk-
based data structures on which databases are stored. It provides rapid access to
objects and relations and meta information about them on the disk. The main
job of the storage manager is to move the data between disk and memory as
needed.

www.manharaa.com




4 File system and storage management

The OLOG file system is built on top of the UNIX file system. Each database
corresponds to two disk files: the data file and the index file, which are automat-
ically created by OLOG system when started. The data file stores objects and
relation tuples whereas the index file contains key indices to objects and relation
tuples. In addition, OLOG maintains four system files for meta data manage-
ment: database file which records the information of all databases in the system,
relation file which records the information of all relations, class file which records
the information of all classes, and rule file which records the information of all
rules in each database. All data, index and various definition units in OLOG
files are stored as byte string.

The internal structure of the OLOG data file supports the following charac-
teristics:

(1) variable-length relation tuples and objects
(2) indices for objects and relation tuples
(3) reuse of deleted disk file space

The data file contains a file header and a dynamic storage area where variable-
length blocks of data are stored. The file header is composed of the following
fields:

(1) free space stores a pointer to the first block of deallocated heap space
(2) end of file stores a pointer to the address of the last byte in the file
(3) start of heap — stores a pointer to the start of the dynamic storage area

When a block is deallocated, the block is marked deleted and left in the file.
The size of the file is determined by blocks allocated and will remain the same
no matter how many blocks are deleted. The deleted blocks are maintained in
a non-contiguous list. Each block in the list points to the next block in the list
starting at a specified address. The “free space” pointer in the file header is used
to store the file address of the block where the free space list starts.

The dynamic data area always starts out empty and grows when variable
data blocks are allocated. The “free space” and “end of file” pointers in the
OLOG file header are used to maintain the dynamic data area. The “end of file”
pointer marks the end of the file and points to the location where the file can
be extended during block allocation. OLOG always tries to allocate blocks from
its free space list.

In OLOG, file addresses of block are used as pointers to the objects and
relational tuples. File addresses are represented by 32-bit signed integer values.
Therefore, the file can grow to a maximum size of 2.1 GB. File addresses have
to be translated into exact memory addresses for the accesses in memory. The
Storage Manager is in charge of address mapping that translates file addresses
into memory addresses

To make efficient use of each block, OLOG adopts a technique similar to
that used in Cache-Memory Mapping, called Set Associative Mapping. Fach

www.manaraa.com



relation or class has its own buffer space for its own facts. The buffer space is
composed of a lot of memory pages, holding some memory slots. This manager
is responsible for managing the space occupied by various entities requested by
the applications. This means if an object or a relational tuple is currently in
main memory, then its memory address is returned to the application requesting
it. Otherwise the Storage Manager employs a LRU algorithm to drop some old
objects or relational tuples that have not been used for a long time, and then
loads this one into memory. In case that the block to be dropped has been
changed or deleted, the Buffer Manager physically changes or deletes the block
stored on disk. The format of an object in its page buffer is similar to its disk
format.

5 OLOG Kernel

In this section, we briefly describe Query, DML, DDL and Index managers in
OLOG Kernel.

Query Manager The Query Manager is responsible for data retrieval and rule
evaluation pertaining to the facts stored extensionally in the database and de-
fined intensionally by rules. It firstly translates a query into its internal expres-
sions, optimizes them based on the conditions the query processes and then uses
different evaluation strategies such as matching, semi-naive bottom-up evalu-
ation with rule ordering, and magic-set rule rewriting techniques to find the
results. We discuss query evaluation in detail in Section 6.

DML Manager The DML Manager performs all the updates to the extensional
relations and objects. When an object or relation tuple is to be inserted, DML
first invokes DDL manager to query the schema definition and check whether
it is well-typed with respect to its schema definition. Only well-typed objects
and relation tuples can be inserted successfully. When an object or relation
tuple is to be deleted, DML first checks whether it is referenced. If not, it then
proceeds; otherwise, it rejects the request. Modification of an object or relation
tuple is handled similarly. In OLOG, an update may imply a query. In this case,
the DML manager will invoke the Query Manager to process the query before
performing the update. After extensional relations or objects are updated, it will
also request the Query Manager to propagate the updates to the materialized
intensional relations and objects that are dependent on the updated ones.

DDL Manager The DDL Manager processes all OLOG DDL commands, main-
tains system files about domains, class and relation schemas, and rules. It also
handles domain, schema, and rule queries and is thus called by DML and Query
Managers. As intensional information may be materialized, the DDL manager
is also responsible for dropping those materialized intensional information and
the corresponding rules when requested.

www.manaraa.com



Index Manager The Index Manager maintains the B-tree indices for the OLOG
extensional and intensional relations and objects. and Hash indices for temporal
ones. They are chosen because they are efficient and standard, and are used by
most database systems. For objects, object identifiers are used as the key. For
relations, primary keys are used as the key for B-tree indexing. B-tree indices
reside both in memory and on disk and are used for defining and maintaining
keys of each relation. They are stored in the index file of each database. Hash
indices are applied only in memory for temporal relations, which could be the
differential relations of semi-naive evaluation or temporarily created views.

6 Query Evaluation

The OLOG query manager is responsible for data retrieval and rule evaluation
pertaining to the facts stored extensionally in the data file and defined intension-
ally by rules in the rule system file. It combines the query processing methods in
ROL [20] and Relationlog [19] and supports the following evaluation strategies:

(1) matching
(2) semi-naive bottom-up evaluation with rule ordering
(3) magic-set rule rewriting technique

Matching In OLOG, the intensional information derived using rules is main-
tained by the system. It is kept in main memory if the memory space permits
and it can be made persistent and maintained current by the system. If a user
query concerns only the information in main memory, OLOG can find the query
results immediately without any disk operations. If a user query concerns only
the information stored on disk, OLOG uses indices if any to find the required
information. For example, OLOG will use matching to evaluate the following
query:
query Result (TomsWife S) :— Person (Name " Tom”, Spouse.Name S)

Semi-naive bottom-up evaluation This strategy is used to evaluate rules and is
the main one for the query processing in deductive database systems. If a user
query concerns the intensional information that is not available in main memory
or on disk, and the query is so general that no other methods can be used, then
OLOG uses this strategy. For example, OLOG will uses semi-naive bottom-up
strategy to evaluate the following query:

query Result (Person N, Children <C>) -
Family (Husband.Name N, Children.Name C)

Magic-set rule rewriting technique If a user query contains some constants, then
we can only compute intensional information relevant to the query using the
magic-set rule rewriting technique as it simulates in semi-naive bottom-up eval-
uation the pushing of selections that occurs in top-down approaches. Its perfor-
mance can rival the efficiency of the top-down techniques. For example, OLOG
will use magic-set rule rewriting technique to evaluate the following queries:

www.manaraa.com



query Result (TomsAncs <S>) :— Person (Name " Tom", Ancestors.Name S)

query Result (AllTomsChildren <C>) :—
Family (Husband.Name " Tom"; Children.Name C)

7 Conclusion

In this paper, we have discussed the design and implementation of the OLOG
deductive object-oriented database system. The main novel feature of OLOG is
its natural support for persistent classes and relations so that both pure object-
oriented and object relational databases can be supported.

A complete implementation as described in this paper has been developed un-
der the UNIX environment. The system will be available over the Internet after
further testing, debugging and improving. More information about OLOG sys-
tem can be found from the web site http://www.cs.uregina.ca/~mliu/0L0G.

We are currently extending OLOG into a full-fledged system. We are also
developing the interfaces of SQL, OQL, and extended relational algebra and
calculus on the top of OLOG in order to make it a useful tool in the database
research and teaching.

Acknowledgment

The authors thank the Natural Sciences and Engineering Research Council of
Canada (NSERC) for research and equipment grants to M. Liu and the Graduate
Studies and Research of the University of Regina for scholarships to X. Li.

References

1. S. Abiteboul and S. Grumbach. COL: A Logic-Based Language for Complex Ob-
jects. ACM Trans. on Database Systems, 16(1):1-30, 1991.

2. S. Abiteboul and P. C. Kanellakis. Object Identity as a Query Language. Journal
of ACM, 45(5):798-842, 1998.

3. P. Butterworth, A. Otis, and J. Stein. The Gemstone Object Database Manage-
ment System. Communications of the ACM, 34(10):64 77, 1991.

4. F. Cacace, S. Ceri, S. Crepi-Reghizzi, L. Tanca, and R. Zicari. Integrating Object-
Oriented Data Modelling with a Rule-Based Programming Paradigm. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 225-236, 1990.

5. Q. Chen and W. Chu. HILOG: A High-Order Logic Programming Language for
Non-1NF Deductive Databases. In W. Kim, J.M. Nicolas, and S. Nishio, edi-
tors, Proceedings of the International Conference on Deductive and Object-Oriented
Databases, pages 431 452, Kyoto, Japan, 1989. North-Holland.

6. D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo.
The LDL System Prototype. IEEE Transactions on Knowledge and Data Engi-
neering, 2(1):76 90, 1990.

www.manaraa.com



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

O. Deux and others. The Story of Oy. IEEE Transactions on Knowledge and Data

Engineering, 2(1):91 108, 1990.

D. H. Fishman, B. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis,

N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A.

Ryan, and M. C. Shan. Iris: An object-Oriented Database Management System.

ACM Trans. on Office Information Systems, 5(1):48-69, 1987.

H. M. Jamil. Implementing Abstract Objects with Inheritance in Datalog™®?. In

Proceedings of the International Conference on Very Large Data Bases, pages 46—

65, Athens, Greece, 1997. Morgan Kaufmann Publishers, Inc.

M. Kifer; G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and

Frame-Based Languages. Journal of ACM, 42(4):741 843, 1995.

M. Kifer and J. Wu. A Logic for Programming with Complex Objects. J. Computer

and System Sciences, 47(1):77-120, 1993.

G. M. Kuper. Logic Programming with Sets. J. Computer and System Sciences,

41(1):44-64, 1990.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore System.

Communications of the ACM, 34(10):50-63, 1991.

T. W. Ling and W. B. T. Lee. DO2: A Deductive Object-Oriented Database

System. In Proceedings of the 9th International Conference on Database and Ezpert

System Applications (DEXA ’98), pages 50-59, Vienna, Austria, 1998. Springer-

Verlag LNCS 1460.

M. Liu. ROL: A Deductive Object Base Language. Information Systems, 21(5):431
457, 1996.

M. Liu. Relationlog: A Typed Extension to Datalog with Sets and Tuples. Journal

of Logic Programming, 36(3):271 299, 1998.

M. Liu. Deductive Database Languages: Problems and Solutions. ACM Computing

Surveys, 30(1):27-62, 1999.

M. Liu. OLOG: A Deductive Object Database Language. In Proceedings of the

Workshop on Next Generation Information Technologies and Systems (NGITS

’99), pages 120 137, Zikhron-Yaakov, Israel, July 5-7 1999. Springer-Verlag LNCS

1649.

M. Liu. Query Processing in Relationlog. In Proceedings of the 10th International

Conference on Database and Ezpert System Applications (DEXA 99), pages 342

351, Florence, Italy, August 30-September 3 1999. Springer-Verlag LNCS 1677.

M. Liu. The Design and Implementation of the ROL System. Journal of Intelligent

Information System, 15(2):41-68, 2000.

M. Liu and R. Shan. The Design and Implementation of the Relationlog Deductive

Database System. In Proceedings of the 9th International Workshop on Database

and Ezpert System Applications (DEXA Workshop ’98), pages 856-863, Vienna,

Austria, August 24-28 1998. IEEE-CS Press.

D. Maier. A logic for objects. Technical Report CS/E-86-012, Oregon Graduate

Institute, Beaverton, Oregon, 1986.

R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL

Deductive System. The VLDB Journal, 3(2):161-210, 1994.

P. R. F. Sampaio and N. W. Paton. Deductive Object-Oriented Database Systems:

A Survey. In Proceedings of the 3rd International Workshop on Rules in Database

Systems (RIDS ’92), pages 1 19. Springer-Verlag LNCS 1312, 1997.

V. Soloviev. An Overview of Three Commercial Object-Oriented Database Man-

agement Systems: ONTOS, ObjectStore, O2. SIGMOD Record, 21(1):93-104, 1992.

www.manaraa.com



